Consider a father pushing a child on a playground merry-go-round. The system has a moment of inertia of 84.4 kg.m^2. The father exerts a force on the merry-go-round perpendicular to its radius to achieve an angular acceleration of 4.44 rad/s^2.

Required:
a. How long (in s) does it take the father to give the merry-go-round an angular velocity of 1.53 rad/s? (Assume the merry-go-round is initially at rest.)
b. How many revolutions must he go through to generate this velocity?
c. If he exerts a slowing force of 270 N at a radius of 1.20 m, how long (in s) would it take him to stop them?

Respuesta :

Answer:

Explanation:

Given that:

the initial angular velocity [tex]\omega_o = 0[/tex]

angular acceleration [tex]\alpha[/tex] = 4.44 rad/s²

Using the formula:

[tex]\omega = \omega_o+ \alpha t[/tex]

Making t the subject of the formula:

[tex]t= \dfrac{\omega- \omega_o}{ \alpha }[/tex]

where;

[tex]\omega = 1.53 \ rad/s^2[/tex]

∴

[tex]t= \dfrac{1.53-0}{4.44 }[/tex]

t = 0.345 s

b)

Using the formula:

[tex]\omega ^2 = \omega _o^2 + 2 \alpha \theta[/tex]

here;

[tex]\theta[/tex] = angular displacement

∴

[tex]\theta = \dfrac{\omega^2 - \omega_o^2}{2 \alpha }[/tex]

[tex]\theta = \dfrac{(1.53)^2 -0^2}{2 (4.44) }[/tex]

[tex]\theta =0.264 \ rad[/tex]

Recall that:

2Ï€ rad = 1 revolution

Then;

0.264 rad = (x) revolution

[tex]x = \dfrac{0.264 \times 1}{2 \pi}[/tex]

x = 0.042 revolutions

c)

Here; force = 270 N

radius = 1.20 m

The torque = F * r

[tex]\tau = 270 \times 1.20 \\ \\ \tau = 324 \ Nm[/tex]

However;

From the moment of inertia;

[tex]Torque( \tau) = I \alpha \\ \\ Since( I \alpha) = 324 \ Nm. \\ \\ Then; \\ \\ \alpha= \dfrac{324}{I}[/tex]

given that;

I = 84.4 kg.m²

[tex]\alpha= \dfrac{324}{84.4} \\ \\ \alpha=3.84 \ rad/s^2[/tex]

For re-tardation; [tex]\alpha=-3.84 \ rad/s^2[/tex]

Using the equation

[tex]t= \dfrac{\omega- \omega_o}{ \alpha }[/tex]

[tex]t= \dfrac{0-1.53}{ -3.84 }[/tex]

[tex]t= \dfrac{1.53}{ 3.84 }[/tex]

t = 0.398s

The required time it takes= 0.398s