Answer:
(a) The units of f'(s) is kilometer per liter
(b) [tex]\triangle = 2.22 * 10^{-4}[/tex]
Step-by-step explanation:
Given
[tex]C = f(s)[/tex]
[tex]f(80) = 0.015, f(90) = 0.02, f(100) = 0.027[/tex]
Solving (a): Unit of f'(s)
From the question, we understand that:
[tex]C = f(s)[/tex]
and
[tex]C = Litre/km[/tex] --- units
f'(s) is the inverse of C.
Hence:
i.e.
[tex]f'(s) = C^{-1}[/tex] --- units
So, we have:
[tex]f'(s) = (Litre/km)^{-1}[/tex]
[tex]f'(s) = Km/Litre[/tex]
Solving (b): Instantaneous rate of change at:
[tex]s = 90[/tex]
We have:
[tex]C = f(s)[/tex]
The change is calculated as:
[tex]\triangle = \frac{f(s)}{s}[/tex]
Substitute 90 for s
[tex]\triangle = \frac{f(90)}{90}[/tex]
Given that: [tex]f(90) = 0.02[/tex]
[tex]\triangle = \frac{0.02}{90}[/tex]
[tex]\triangle = 0.000222[/tex]
[tex]\triangle = 2.22 * 10^{-4}[/tex]