Respuesta :
Answer:
11.78meters
Explanation:
Given data
Mass m = 100kg
Length of cord= 10m
Spring constant k= 35N/m
At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy
That is
Us=Ug
Us= 1/2kx^2
Ug= mgh
1/2kx^2= mgh
0.5*35*10^2= 100*9.81*h
0.5*35*100=981h
1750=981h
h= 1750/981
h= 1.78
Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge
Answer:
[tex]X=74.7[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=100kg[/tex]
Length [tex]l=10m[/tex]
Spring constant [tex]\mu=35N/m[/tex]
Generally the equation for potential energy of mass is mathematically given by
 [tex]P.E_m=mgh[/tex]
Since
 [tex]P.E_m=P.E_s[/tex]
Where
 P.E_s =potential energy of spring
Therefore
[tex]m*g*(x+10) = 0.5*k*\mu^2[/tex]
[tex]100*9.8*(x+10) = 0.5*35*\mu^2[/tex]
[tex]980*(x+10) = 17.5*\mu^2[/tex]
[tex]980*x+9800 = 17.5*\mu^2[/tex]
 [tex]17.5*\mu^2 - 980*\mu - 9800 = 0[/tex]
Comparing the equation above with standard quadratic equation
 [tex]17.5*\mu^2 - 980*\mu - 9800 = 0[/tex]
 [tex]ax^2+bx+c=0[/tex]
Giving
 [tex]a=17.5\\ b=-980\\ c=-9800[/tex]
Solving Quadratic equation the roots of the equation is given as
 [tex]\mu_1=64.66[/tex]
 [tex]\mu_2=-8.661[/tex]
Since
[tex]\mu[/tex] can not be -ve
Therefore
The vertical distance attained by the bungee jumper is given as
 [tex]X=\mu+l[/tex]
 [tex]X=64.7+10[/tex]
 [tex]X=74.7[/tex]