Respuesta :
Answer:
a) x* e∧ t/10  =  20 *e∧ t/10 + 2
b) x  =  14,2 gall. In 10 min. we get 14,2 gallons of bleach in the tank
c) After a very long time we will find 20 gallons of bleach in the tank
Step-by-step explanation:
The variation of bleach in water in the tank is Δ(x)t:
Δ(x)t  = [Amount of x added to the tank - Amount of x drain out of the tank]*Δt
Now the amount of x added to the tank is:
Rate of adding* the concentration
Rate of adding = Â 4 gallons per minute
Concentration  half and half ( water + bleach)  = 0,5
Rate of draining = Â 4 gallons per minute
Concentration of draining: Unknown but can be expressed as:
x(t)/40. According to this
Δ(x)t  =  [4 * 0,5  -  4 * x(t)/40]*Δt
Dividing by Δt on both sides of the equation and tacking limits we get
dx/ dt   =  2  - x / 10
dx/dt + x/10 =2
Multyiplying by e∧ t/10 on both sides
e∧ t/10* [ dx/dt  +  x/10 ]  =  2 *e∧ t/10
To solve it, integrating the first member is
x* e∧ t/10  =  20 *e∧ t/10 + C
for initial condition t = 0
4 Â Â = Â 20 + C
C = -16
a) x* e∧ t/10  =  20 *e∧ t/10 - 16
b) in 10 minutes
x* e∧ t/10  =  20 *e∧ t/10 - 16
x *e  =  20*e  - 16
x  =  20  -  16/e
x  =  20  -  16/2,718
x  =  20 -  5,88
x  =  14,2  gallons.
c) After a very long time we will find 20 gallons of bleach in the tank