contestada

An engineer stands 200 feet from a tower and sights the top of the tower at a 45° angle of elevation. Find the height of the tower.

Respuesta :

msm555

Answer:

Solution given:

Let AB be distance between tower ,angle of elevation be<A and height of tower be BC.

we have

<A=45°

AB=200ft

BC=?

Relationship between base and perpendicular is given by tan angle.

tan A=[tex] \frac{perpendicular }{base} [/tex]

tan 45°=[tex] \frac{BC }{AB} [/tex]

1=[tex] \frac{BC }{200ft} [/tex]

doing crisscrossed multiplication

BC=200ft

the height of the tower is 200ft.

Ver imagen msm555

So

  • tanØ=Perpendicular/Base

Height is perpendicular

  • tan45=perpendicular/200
  • perpendicular=200tan45
  • perpendicular=200ft
Ver imagen Аноним