Answer:
The speed will be "872.7 m/s".
Explanation:
As we know,
At room temperature, speed of sound will be:
e = 345 m/s
In metal bar, sound's speed will be:
= [tex]v>e[/tex]
Let,
The pulse travel in time "t", then
⇒ [tex]t=\frac{4.8}{v}[/tex]
⇒ [tex]t+8.4\times 10^{-3}=\frac{4.8}{345}[/tex]
⇒ [tex]t+8.4\times 10^{-3}=0.01391[/tex]
⇒            [tex]t=5.5 \ ms[/tex]
hence,
The speed of sound will be:
⇒ [tex]v=\frac{4.8}{t}[/tex]
⇒   [tex]=\frac{4.8}{5.5}\times 10^3[/tex]
⇒   [tex]=872.7 \ m/s[/tex]