Answer:
The appropriate solution is:
(a) n ≈ 900
(b) n ≈ 1165
Explanation:
According to the question,
(a)
The final number of molecules throughout water will be:
= [tex](\frac{1000}{1000}\times 4\times 10 )^n[/tex]
where, n = number of extractions
Now,
The initial number of molecules will be:
= [tex]1.06\times 10^{-4}\times 6.023\times 10^{23}[/tex]
= [tex]6.387\times 10^{19}[/tex]
Final number of molecule,
⇒ [tex]1.566\times 10^{-16}=(\frac{1000}{1040} )^n[/tex]
            [tex]n \approx 900[/tex]
(b)
Final molecules of X = left (0.01%)
hence,
⇒ [tex]initial = 6.384\times 10^{19}[/tex]
  [tex]\frac{1}{6.384\times 10^{19}} =(\frac{1000}{1040} )^2[/tex]
         [tex]n \approx 1165[/tex]
           Â