​ g(1)=−19 g(n)=g(n−1)+6 ​ Find an explicit formula for g(n)g(n)g, left parenthesis, n, right parenthesis. g(n)=g(n)=g, left parenthesis, n, right parenthesis, equals

Respuesta :

Answer:

[tex]g(n) = 6n -25[/tex]

Step-by-step explanation:

Given:

[tex]g(1) = -19[/tex]

[tex]g(n) = g(n - 1) + 6[/tex]

Required

The explicit formula

Let n = 2; So, we have:

[tex]g(n) = g(n - 1) + 6[/tex]

[tex]g(2) = g(2 - 1) + 6[/tex]

[tex]g(2) = g(1) + 6[/tex]

[tex]g(2) = -19 + 6[/tex]

[tex]g(2) = -13[/tex]

So, we have:

[tex]g(1) = -19[/tex] ----- First term

[tex]g(2) = -13[/tex]

Calculate common difference (d)

[tex]d = g(2) - g(1)[/tex]

[tex]d = -13 --19[/tex]

[tex]d = 6[/tex]

The explicit function is then calculated as:

[tex]g(n) = a + (n - 1)d[/tex]

Where

[tex]a = -19[/tex] --- First term

So:

[tex]g(n) = a + (n - 1)d[/tex]

[tex]g(n) = -19 + (n - 1)*6[/tex]

Open bracket

[tex]g(n) = -19 + 6n - 6[/tex]

Collect like terms

[tex]g(n) = 6n - 6-19[/tex]

[tex]g(n) = 6n -25[/tex]