[tex]\sf\purple{The\:radius\:of\:the\:cylinder\:is\:approximately \:28 \:ft.}[/tex]
[tex]\sf\blue{Height\:of\:the\:cylinder\:(h) }[/tex] = 10 ft.
[tex]\sf\pink{Volume\:of\:the\:cylinder}[/tex] = 25,456 ft³.
[tex]\sf\purple{The\:radius\:of\:the\:cylinder.}[/tex]
We know that,
[tex]\sf\red{Volume\:of\:a\:cylinder}[/tex] =[tex]\pi {r}^{2} h \\ ✒ \: 25456 \: {ft}^{3} = \pi {r}^{2} \times 10 \: ft \\ \: ✒ \: {r}^{2} = \frac{25456 \times 7 \: {ft}^{3} }{22 \times 10 \: ft} \\ ✒ \: {r}^{2} \: = \frac{178192 \: {ft}^{2} }{220} \\ \: ✒ \: {r}^{2} = 809.9636 \: {ft}^{2} \\ \: ✒\: r \: = \sqrt{809.9636 \: {ft}^{2} } \\ ✒ \: r \: = 28.45 \: ft[/tex]
Hence, the radius of the cylinder is 28.45 feet.
[tex]\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘[/tex]