Respuesta :

Answer:

[tex]20 > c > 4[/tex]

Step-by-step explanation:

Given

[tex]Sides =8\ and\ 12[/tex]

Required

The third side

To do this, we make use of the triangle inequality theorem which implies that:

[tex]a + b > c[/tex]

[tex]a + c > b[/tex]

[tex]b + c > a[/tex]

Where

[tex]a,b,c\to sides[/tex]

So, we have:

[tex]8 + 12 > c[/tex]

[tex]8 + c > 12[/tex]

[tex]12 + c > 8[/tex]

Solve all inequalities

[tex]8 + 12 > c[/tex]

[tex]20 > c[/tex]

[tex]8 + c > 12[/tex]

[tex]c > 4[/tex]

[tex]12 + c > 8[/tex]

[tex]c > -4[/tex]

Ignore negative inequalities.

So, we have:

[tex]20 > c[/tex] and [tex]c > 4[/tex]

Combine

[tex]20 > c > 4[/tex]

The above implies that the third length is between 5 and 19 (inclusive)