Answer:
[tex]20 > c > 4[/tex]
Step-by-step explanation:
Given
[tex]Sides =8\ and\ 12[/tex]
Required
The third side
To do this, we make use of the triangle inequality theorem which implies that:
[tex]a + b > c[/tex]
[tex]a + c > b[/tex]
[tex]b + c > a[/tex]
Where
[tex]a,b,c\to sides[/tex]
So, we have:
[tex]8 + 12 > c[/tex]
[tex]8 + c > 12[/tex]
[tex]12 + c > 8[/tex]
Solve all inequalities
[tex]8 + 12 > c[/tex]
[tex]20 > c[/tex]
[tex]8 + c > 12[/tex]
[tex]c > 4[/tex]
[tex]12 + c > 8[/tex]
[tex]c > -4[/tex]
Ignore negative inequalities.
So, we have:
[tex]20 > c[/tex] and [tex]c > 4[/tex]
Combine
[tex]20 > c > 4[/tex]
The above implies that the third length is between 5 and 19 (inclusive)