Find the side lengths of the triangle in this picture.

Answer:
Hypotenuse: 41 meters, Long leg: 40 meters, Short leg: 9 meters.
Step-by-step explanation:
According to the statement, we have the following information about the lengths of the right triangle:
Hypotenuse
[tex]3\cdot x + 14[/tex]
Long leg
[tex]3\cdot x + 13[/tex]
Short leg
[tex]x[/tex]
By the Pythagoric Theorem, we have the following expression:
[tex](3\cdot x + 14)^{2} = x^{2} + (3\cdot x + 13)^{2}[/tex] (1)
[tex]9\cdot x^{2}+84\cdot x + 196 = x^{2} + 9\cdot x^{2} + 78\cdot x + 169[/tex]
[tex]9\cdot x^{2} + 84\cdot x + 196 = 10\cdot x^{2} + 78\cdot x +169[/tex]
[tex]x^{2} -6\cdot x -27 = 0[/tex]
[tex](x-9)\cdot (x+3) = 0[/tex]
As length is a positive variable by nature, then the only possible solution is [tex]x = 9[/tex]. Lastly, the side lengths of the right triangle are:
Hypotenuse: 41 meters, Long leg: 40 meters, Short leg: 9 meters.