Answer:
(a) PR = 55.2 cm
(b) RT = 19.7 cm
(c) <RPT = [tex]20.8^{o}[/tex]
Step-by-step explanation:
(a) to determine the value of PR, apply the Pythagoras theorem to PQR.
PQ = 45, and SP = QR = 32. So that;
[tex]/hyp/^{2}[/tex] = [tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex]
[tex]/PR/^{2}[/tex] = [tex]45^{2}[/tex] + [tex]32^{2}[/tex]
= 2025 + 1024
= 3049
PR = [tex]\sqrt{3049}[/tex]
= 55.218
PR = 55.2 cm
(b) To determine RT, apply the appropriate trigonometric function to QRT.
Let RT be represented by x, so that;
Sin [tex]38^{o}[/tex] = [tex]\frac{x}{32}[/tex]
x = 32 * Sin [tex]38^{o}[/tex]
= 32 * 0.6157
x = 19.7024
RT = 19.7 cm
(c) To determine <RPT, let the angle be represented by θ.
Sin θ = [tex]\frac{opposite}{hypotenuse}[/tex]
= [tex]\frac{RT}{PR}[/tex]
Sin θ = [tex]\frac{19.7024}{55.218}[/tex]
= 0.3568
θ = [tex]Sin^{-1}[/tex] 0.35568
= [tex]20.84^{o}[/tex]
Thus, <RPT = [tex]20.8^{o}[/tex]