Practice 4b
In the diagram, PQRS is a rectangular sloping surface, PQTU is a rectangle on horizontal ground and RI and
SU are vertical lines. PQ = SR=UT = 45 cm, QR = PS = 32 cm and angle RQT= 38º.

Calculate
PR,
(b) RT, and
(c) angle RPT

Practice 4b In the diagram PQRS is a rectangular sloping surface PQTU is a rectangle on horizontal ground and RI and SU are vertical lines PQ SRUT 45 cm QR PS 3 class=

Respuesta :

Answer:

(a) PR = 55.2 cm

(b) RT = 19.7 cm

(c) <RPT = [tex]20.8^{o}[/tex]

Step-by-step explanation:

(a) to determine the value of PR, apply the Pythagoras theorem to PQR.

PQ = 45, and SP = QR = 32. So that;

[tex]/hyp/^{2}[/tex] = [tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex]

[tex]/PR/^{2}[/tex] = [tex]45^{2}[/tex] + [tex]32^{2}[/tex]

          = 2025 + 1024

          = 3049

PR = [tex]\sqrt{3049}[/tex]

     = 55.218

PR = 55.2 cm

(b) To determine RT, apply the appropriate trigonometric function to QRT.

Let RT be represented by x, so that;

Sin [tex]38^{o}[/tex] = [tex]\frac{x}{32}[/tex]

x = 32 * Sin [tex]38^{o}[/tex]

  = 32 * 0.6157

x = 19.7024

RT = 19.7 cm

(c) To determine <RPT, let the angle be represented by θ.

Sin θ = [tex]\frac{opposite}{hypotenuse}[/tex]

        = [tex]\frac{RT}{PR}[/tex]

Sin θ = [tex]\frac{19.7024}{55.218}[/tex]

         = 0.3568

θ = [tex]Sin^{-1}[/tex] 0.35568

  = [tex]20.84^{o}[/tex]

Thus, <RPT = [tex]20.8^{o}[/tex]