use the scatter plot and the trend line to show answer a-c. Write an equation for the trend line. predict the value of y when x =21 Predict the value of x when y = 150

Respuesta :

Answer:

See Explanation

Step-by-step explanation:

This question is incomplete, as the required scatter plot is not included in the question. I will answer your question with the attached plot.

Solving (a): The equation

Pick any [tex]two[/tex]  [tex]points[/tex]on the [tex]trend[/tex] line

[tex](x_1,y_1) = (30,40)[/tex]

[tex](x_2,y_2) = (80,70)[/tex]

[tex]y = 0.6x + 22[/tex]

Calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 -x_1}[/tex]

[tex]m = \frac{70 - 40}{80-30}[/tex]

[tex]m = \frac{30}{50}[/tex]

[tex]m = 0.6[/tex]

The equation is then calculated as:

[tex]y = m(x - x_1) + y_1[/tex]

This gives:

[tex]y = 0.6(x - 30) + 40[/tex]

[tex]y = 0.6x - 18 + 40[/tex]

[tex]y = 0.6x + 22[/tex]

Solving (b): y, when [tex]x = 21[/tex]

[tex]y = 0.6x + 22[/tex]

Substitute [tex]x = 21[/tex]

[tex]y = 0.6 * 21 + 22[/tex]

[tex]y = 12.6 + 22[/tex]

[tex]y = 34.6[/tex]

Solving (c): x when [tex]y=150[/tex]

[tex]y = 0.6x + 22[/tex]

Substitute [tex]y=150[/tex]

[tex]150 = 0.6x + 22[/tex]

Collect like terms

[tex]0.6x = 150 -22[/tex]

[tex]0.6x = 128[/tex]

Solve for x

[tex]x = \frac{128}{0.6}[/tex]

[tex]x = 213.3[/tex]

Ver imagen MrRoyal