Answer:
А.The system has two solutions, but only one is viable because the other results in a negative width.
Step-by-step explanation:
Given
Let:
[tex]L_A \to[/tex] length of play area A
[tex]W_A \to[/tex] width of play area A
[tex]L_B \to[/tex] length of play area B
[tex]W_B \to[/tex] width of play area B
[tex]x \to[/tex] Area of A
[tex]y \to[/tex] Area of B
From the question, we have the following:
[tex]L_A = 1 + 4W_A[/tex]
[tex]W_B = 2 + W_A[/tex]
[tex]L_B = 2 + 3W_B[/tex]
[tex]x = y[/tex]
The area of A is:
[tex]x = L_A * W_A[/tex]
This gives:
[tex]x = (1 + 4W_A) * W_A[/tex]
Open bracket
[tex]x = W_A + 4W_A^2[/tex]
The area of B is:
[tex]y = L_B * W_B[/tex]
[tex]y = (2 + 3W_B) * ( 2 + W_A)[/tex]
Substitute: [tex]W_B = 2 + W_A[/tex]
[tex]y = (2 + 3(2 + W_A)) * ( 2 + W_A)[/tex]
Open brackets
[tex]y = (2 + 6 + 3W_A) * ( 2 + W_A)[/tex]
[tex]y = (8 + 3W_A) * ( 2 + W_A)[/tex]
Expand
[tex]y = 16 + 8W_A + 6W_A + 3W_A^2[/tex]
[tex]y = 16 + 14W_A + 3W_A^2[/tex]
We have that:
[tex]x = y[/tex]
This gives:
[tex]W_A + 4W_A^2 = 16 + 14W_A + 3W_A^2[/tex]
Collect like terms
[tex]4W_A^2 - 3W_A^2 + W_A -14W_A - 16 =0[/tex]
[tex]W_A^2 -13W_A - 16 =0[/tex]
Using quadratic calculator, we have:
[tex]W_A = -14.1[/tex] or [tex]W = 1.13[/tex] --- approximated
But the width can not be negative; So:
[tex]W = 1.19[/tex]