Respuesta :

Given:

The expanded form of [tex](x+s)(x-t)[/tex] is [tex]x^2+Kx-40[/tex].

Where, s, t, K are positive integers.

To find:

The smallest possible value of K.

Solution:

The expanded form of [tex](x+s)(x-t)[/tex] is [tex]x^2+Kx-40[/tex]. It means,

[tex](x+s)(x-t)=x^2+Kx-40[/tex]

[tex]x^2-tx+sx-st=x^2+Kx-40[/tex]

[tex]x^2+(s-t)x-st=x^2+Kx-40[/tex]

On comping both sides, we get

[tex]K=s-t[/tex]              ...(i)

K is a positive integer if s>t.

And

[tex]st=40[/tex]

The factor pairs of 40 are (1,40), (2,20), (4,10), (5,8), (8,5), (10,4), (20,2) and (40,1).

Since s>t, therefore the possible values for (s,t) are (8,5), (10,4), (20,2) and (40,1).

Using (i), find the value of K for each factor pair.

[tex]K=8-5=3[/tex]  

[tex]K=10-4=6[/tex]      

[tex]K=20-2=18[/tex]          

[tex]K=40-1=39[/tex]          

Therefore, the smallest possible value of K is 3.