Answer:
$500 will give the company the maximum revenue
Step-by-step explanation:
Given
[tex]r(x) = x (1000 - 2x)[/tex]
Required
Price to generate maximum revenue
We have:
[tex]r(x) = x (1000 - 2x)[/tex]
Open bracket
[tex]r(x) = 1000x - 2x^2[/tex]
Rewrite as:
[tex]r(x) = - 2x^2 + 1000x[/tex]
The maximum value of x is calculated using:
[tex]x = -\frac{b}{2a}[/tex]
Where:
[tex]f(x) = ax^2 + bx + c[/tex]
So:
[tex]a \to -2[/tex]
[tex]b = 1000[/tex]
[tex]c = 0[/tex]
[tex]x = -\frac{b}{2a}[/tex]
[tex]x = -\frac{1000}{-2}[/tex]
[tex]x = \frac{1000}{2}[/tex]
[tex]x = 500[/tex]