. A sequence starts with 180, 120, …. If the sequence is arithmetic, create a recursive and explicit formula for the sequence. If the sequence is geometric, create a recursive and explicit formula for the sequence.

Respuesta :

Answer:

Arithmetic Sequence

[tex]T_n = 240-60n[/tex] ---- Explicit

[tex]T_n = T_{n-1} - 60[/tex] --- Recursive

Geometric Sequence

[tex]T_n = 270* (\frac{2}{3})^n[/tex] ---- Explicit

[tex]T_n = T_{n-1} * \frac{2}{3}[/tex] ---- Recursive

Step-by-step explanation:

Given

[tex]180, 120,....[/tex]

(a) Assume it is an arithmetic sequence

The explicit formula is calculated using:

[tex]T_n = a + (n - 1)d[/tex]

Where

[tex]a = 180[/tex]

[tex]d = 120 - 180[/tex]

[tex]d = -60[/tex]

So, we have:

[tex]T_n = 180 + (n - 1)*-60[/tex]

[tex]T_n = 180 -60n + 60[/tex]

Rewrite

[tex]T_n = 180 + 60-60n[/tex]

[tex]T_n = 240-60n[/tex]

The recursive function is calculated using:

[tex]T_1 = 180[/tex]

[tex]T_2 = 120 = 180 - 60 = T_1 - 60[/tex]

[tex]T_3 = 60 = 120 - 60 = T_2 -60[/tex]

-

[tex]T_n = T_{n-1} - 60[/tex]

(b) Assume it is a geometric sequence

The explicit formula is calculated using:

[tex]T_n = ar^{n-1}[/tex]

Where

[tex]a = 180[/tex]

[tex]r = \frac{120}{180}[/tex]

[tex]r = \frac{2}{3}[/tex]

So, we have:

[tex]T_n = 180 * (\frac{2}{3})^{n-1}[/tex]

Split

[tex]T_n = 180 * (\frac{2}{3})^n \div (\frac{2}{3})^1[/tex]

[tex]T_n = 180 * (\frac{2}{3})^n \div (\frac{2}{3})[/tex]

Rewrite as:

[tex]T_n = 180 * (\frac{2}{3})^n * (\frac{3}{2})[/tex]

[tex]T_n = 180 * (\frac{3}{2})* (\frac{2}{3})^n[/tex]

[tex]T_n = 180 * \frac{3}{2}* (\frac{2}{3})^n[/tex]

[tex]T_n = 90 * 3* (\frac{2}{3})^n[/tex]

[tex]T_n = 270* (\frac{2}{3})^n[/tex]

The recursive function is calculated using:

[tex]T_1 = 180[/tex]

[tex]T_2 = 120 = 180 * \frac{2}{3} = T_1 * \frac{2}{3}[/tex]

[tex]T_3 = 80 = 120 * \frac{2}{3} = T_2 * \frac{2}{3}[/tex]

-

[tex]T_n = T_{n-1} * \frac{2}{3}[/tex]