A probability model includes P(red) = 27 2 7 and P(blue) = 314 3 14 . Which of the following probabilities could complete the model? Select all that apply. A. P(green) = 27 2 7 , P(yellow) = 27 2 7 B. P(green) = 38 3 8 , P(yellow) = 18 1 8 C. P(green) = 14 1 4 , P(yellow) = 14 1 4 D. P(green) = 521 5 21 , P(yellow) = 1121 11 21 E. P(green) = 37 3 7 , P(yellow) = 114 1 14

Respuesta :

Answer:

[tex](b)\ P(Green) = \frac{3}{8} ; P(Yellow) = \frac{1}{8}[/tex]

[tex](c)\ P(Green) = \frac{1}{4} ; P(Yellow) = \frac{1}{4}[/tex]

Step-by-step explanation:

Given

[tex]P(Red) = \frac{2}{7}[/tex]

[tex]P(Blue) = \frac{3}{14}[/tex]

Required

Which completes the model

Let the remaining probability be x.

Such that:

[tex]P(Red) + P(Blue) + x = 1[/tex]

Make x the subject

[tex]x = 1 - P(Red) - P(Blue)[/tex]

So, we have:

[tex]x = 1 - \frac{2}{7} - \frac{3}{14}[/tex]

Solve

[tex]x = \frac{14 - 4 - 3}{14}[/tex]

[tex]x = \frac{7}{14}[/tex]

[tex]x = \frac{1}{2}[/tex]

This mean that the remaining model must add up to 1/2

[tex](a)\ P(Green) = \frac{2}{7} ; P(Yellow) = \frac{2}{7}[/tex]

[tex]P(Green) + P(Yellow)= \frac{2}{7} + \frac{2}{7}[/tex]

Take LCM

[tex]P(Green) + P(Yellow)= \frac{2+2}{7}[/tex]

[tex]P(Green) + P(Yellow)= \frac{4}{7}[/tex]

This is false because: [tex]\frac{4}{7} \ne \frac{1}{2}[/tex]

[tex](b)\ P(Green) = \frac{3}{8} ; P(Yellow) = \frac{1}{8}[/tex]

[tex]P(Green) + P(Yellow)= \frac{3}{8} + \frac{1}{8}[/tex]

Take LCM

[tex]P(Green) + P(Yellow)= \frac{3+1}{8}[/tex]

[tex]P(Green) + P(Yellow)= \frac{4}{8}[/tex]

[tex]P(Green) + P(Yellow)= \frac{1}{2}[/tex]

This is true

[tex](c)\ P(Green) = \frac{1}{4} ; P(Yellow) = \frac{1}{4}[/tex]

[tex]P(Green) + P(Yellow)= \frac{1}{4} + \frac{1}{4}[/tex]

Take LCM

[tex]P(Green) + P(Yellow)= \frac{1+1}{4}[/tex]

[tex]P(Green) + P(Yellow)= \frac{2}{4}[/tex]

[tex]P(Green) + P(Yellow)= \frac{1}{2}[/tex]

This is true

Other options are also false

Answer:

B and C

Step-by-step explanation:

i jus took le test