The diagram shows a cubeAh=11.3cn correct to the nearest millimetre calculate the lower bound for the length of an edge of the cub you must show all your working

The diagram shows a cubeAh113cn correct to the nearest millimetre calculate the lower bound for the length of an edge of the cub you must show all your working class=

Respuesta :

Answer:

Lower bound for the length of the edge = 42.5 cm

Step-by-step explanation:

From the picture attached,

FH is the diagonal of square EFGH.

Therefore, length of diagonal FH = [tex]\sqrt{FG^2+HG^2}[/tex]

(By applying Pythagoras theorem)

In triangle AFH,

AH² = AF² + FH²

       = AF² + [tex](\sqrt{FG^2+HG^2})^2[/tex]

       = AF² + FG² + HG²

AH² = 3HG²

(11.3)² = 3(HG²)

HG = [tex]\sqrt{\frac{127.69}{3}}[/tex]

HG = 42.563 cm

For distance correct to the nearest mm, lower bound for the length of the edge = 42.5 cm

And upper bound for the length of the edge = 43.6 cm

Ver imagen eudora

The side lengths of a cu be are congruent, so the edge length of the cu be is 65 mm

The length of diagonal A H is given as:

[tex]\mathbf{AH = 11.3cm}[/tex]

Considering triangle A FH, we have:

[tex]\mathbf{AH^2 = A\ F^2 + FH^2}[/tex]

So, we have:

[tex]\mathbf{11.3^2 = A\ F^2 + FH^2}[/tex]

Considering triangle HE F, we have:

[tex]\mathbf{FH^2 = EF^2 + EH^2}[/tex]

Substitute [tex]\mathbf{FH^2 = EF^2 + EH^2}[/tex] in [tex]\mathbf{11.3^2 = A\ F^2 + FH^2}[/tex]

[tex]\mathbf{11.3^2 = A\ F^2 + EF^2 + EH^2}[/tex]

The side lengths of a cu be are congruent.

This means that: A F = EF = EH

So, we have:

[tex]\mathbf{11.3^2 = A\ F^2 + A\ F^2 + A\ F^2}[/tex]

Evaluate like terms

[tex]\mathbf{11.3^2 = 3A\ F^2}[/tex]

Evaluate squares

[tex]\mathbf{127.69 = 3A\ F^2}[/tex]

Divide both sides by 3

[tex]\mathbf{42.563= A\ F^2}[/tex]

Take square roots

[tex]\mathbf{6.52= A\ F}[/tex]

Rewrite as:

[tex]\mathbf{A\ F = 6.52cm}[/tex]

Convert to m m

[tex]\mathbf{A\ F = 6.52 \times 10mm}[/tex]

[tex]\mathbf{A\ F = 65.2\ mm}[/tex]

Approximate

[tex]\mathbf{A\ F = 65\ mm}[/tex]

Hence, the edge length is 65 mm

Read more about cu bes at:

https://brainly.com/question/23261883