Given:
The given sets are:
Set a : 200, 104, 100, 160.
Set b: 270, 400, 483, 300, x.
Mean of set a: mean of set b= 3:8
To find:
The value of x.
Solution:
Formula for mean:
[tex]Mean=\dfrac{\text{Sum of observations}}{\text{Number of observation}}[/tex]
The mean of set of a is:
[tex]Mean=\dfrac{200+104+100+160}{4}[/tex]
[tex]Mean=\dfrac{564}{4}[/tex]
[tex]Mean=141[/tex]
The mean of set of b is:
[tex]Mean=\dfrac{270+400+483+300+x}{5}[/tex]
[tex]Mean=\dfrac{1453+x}{5}[/tex]
[tex]Mean=\dfrac{1453+x}{5}[/tex]
It is given that,
Mean of set a: mean of set b= 3:8
[tex]\dfrac{141}{\dfrac{1453+x}{5}}=\dfrac{3}{8}[/tex]
[tex]\dfrac{705}{1453+x}=\dfrac{3}{8}[/tex]
[tex]8\times 705=3\times (1453+x)[/tex]
[tex]5640=4359 +3x[/tex]
Isolate the variable x.
[tex]5640-4359 =3x[/tex]
[tex]1281 =3x[/tex]
Divide both sides by 3.
[tex]\dfrac{1281}{3} =x[/tex]
[tex]427 =x[/tex]
Therefore, the value of x is 427.