Answer:
[tex]-186 \to -32 \to 6 \to 27 \to 28\ to 38 \to 56 \to 90 \to 115[/tex]
Step-by-step explanation:
Given
See attachment for A and B
Required
Arrange AB in ascending order
We have:
[tex]A = \left[\begin{array}{ccc}1&7&-1\\5&-2&-9\\-3&8&3\end{array}\right][/tex]
and
[tex]B = \left[\begin{array}{ccc}5&1&7\\3&15&-2\\-1&-9&25\end{array}\right][/tex]
So:
[tex]C = A * B[/tex]
[tex]C = \left[\begin{array}{ccc}1&7&-1\\5&-2&-9\\-3&8&3\end{array}\right] * \left[\begin{array}{ccc}5&1&7\\3&15&-2\\-1&-9&25\end{array}\right][/tex]
[tex]C = \left[\begin{array}{ccc}{27}&{115}&{-32}\\{28}&{56}&{-186}\\{6}&{90}&{38}\end{array}\right][/tex]
Where:
[tex]C_{1,1} =1*5 + 7*3 + (-1) * (-1)[/tex]
[tex]C_{1,2} =1*1 + 7*15 + (-1)*(-9)}[/tex]
[tex]C_{1,3} = 1*7 + 7*(-2) + (-1)*25}[/tex]
[tex]C_{2,1} = 5*5 + (-2)*3 + (-9) * (-1)}[/tex]
[tex]C_{2,2} = 5*1 + (-2)*15 + (-9)*(-9)}[/tex]
[tex]C_{2,3} = 5*7 + (-2)*(-2) + (-9)*25}[/tex]
[tex]C_{3,1} =(-3)*5 + 8*3 + 3 * (-1)[/tex]
[tex]C_{3,2} = (-3)*1 + 8*15 + 3*(-9)[/tex]
[tex]C_{3,3} = (-3)*7 + 8*(-2) + 3*25[/tex]
In increasing order, we have:
[tex]-186 \to -32 \to 6 \to 27 \to 28\ to 38 \to 56 \to 90 \to 115[/tex]