Respuesta :
Answer:
A. The singular enclosure would minimize cost because it requires 180 feet of fencing.
Step-by-step explanation:
Given
Single enclosure
[tex]Area = 2025ft^2[/tex] --- of square
Two adjacent enclosures
[tex]Dimension= 20ft\ by\ 40ft[/tex] ---- both rectangles
[tex]Divider = 40ft[/tex]
Required
Determine the true statement to minimize cost
Start by calculating the perimeter of the single enclosure.
Let
[tex]l \to[/tex] length of the enclosure (square shape)
So:
[tex]Area = l^2[/tex]
[tex]2025 = l^2[/tex]
Rewrite as:
[tex]l^2 = 2025[/tex]
Take square roots
[tex]l = 45[/tex]
The perimeter (P) is then calculated as:
[tex]P = 4l[/tex]
[tex]P = 4 * 45[/tex]
[tex]P_1 = 180ft[/tex]
Next, the perimeter of the two enclosures.
Let
[tex]l \to[/tex] length of the enclosure
[tex]w \to[/tex] width of the enclosure
[tex]l = 20[/tex]
[tex]w =40[/tex]
The perimeter of 1 enclosure is:
[tex]P = 2(l + w)[/tex]
[tex]P = 2(20 + 40)[/tex]
[tex]P = 2*60[/tex]
[tex]P = 120[/tex]
For 2 enclosures
[tex]P_2 =2 * P[/tex]
[tex]P_2 =2 * 120[/tex]
[tex]P_2 =240[/tex]
Remove the length of the divider
[tex]P_2 = 240 - 40[/tex]
[tex]P_2 = 200ft[/tex]
By comparison;
[tex]P_1 < P_2[/tex]
i.e.
[tex]180ft < 200ft[/tex]
Hence, the singular enclosure will minimize costs