What is the surface area of this pyramid?

Answer:
Surface area of the given pyramid = 386.16 cm²
Step-by-step explanation:
Surface area of the given pyramid = Area of the square base + Area of the lateral sides
Area of the square base = (Side)²
= (12)²
= 144 cm²
Area of the lateral side = [tex]\frac{1}{2}(\text{Base})(\text{Lateral height})[/tex]
Lateral height of the triangle = [tex]\sqrt{6^2+(9.1)^2}[/tex] [By applying Pythagoras theorem]
= [tex]\sqrt{82.81+36}[/tex]
= [tex]\sqrt{118.81}[/tex]
= 10.9 cm
Area of the lateral side = [tex]\frac{1}{2}(12)(10.9)[/tex]
= 60.54 cm²
Surface area of the given pyramid = Area of the base + 4(Area of one lateral side)
= 144 + 4(60.54)
= 144 + 242.16
= 386.16 cm²