Respuesta :
Answer: A balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide ([tex]NaN_{3}[/tex]) into solid sodium and gaseous dinitrogen is [tex]2NaN_{3}(s) \rightarrow 2Na(s) + 3N_{2}(g)[/tex].
Explanation:
A chemical equation which contains same number of atoms on both reactant and product side is called a balanced chemical equation.
For example, [tex]NaN_{3}(s) \rightarrow Na(s) + N_{2}(g)[/tex]
Here, number of atoms present on reactant side are as follows.
- Na = 1
- N = 3
Number of atoms present on product side are as follows.
- Na = 1
- N = 2
To balance this equation, multiply [tex]NaN_{3}[/tex] by 2 on reactant side. Also, multiply Na by 2 and [tex]N_{2}[/tex] by 3 on product side.
The equation will be rewritten as follows.
[tex]2NaN_{3}(s) \rightarrow 2Na(s) + 3N_{2}(g)[/tex]
This equation contains same number of atoms on both reactant and product side. Hence, this equation is now balanced.
The symbols (s) and (g) depicts the physical state of substances present in the equation as solid and gas.
Thus, we can conclude that balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide ([tex]NaN_{3}[/tex]) into solid sodium and gaseous dinitrogen is [tex]2NaN_{3}(s) \rightarrow 2Na(s) + 3N_{2}(g)[/tex].