A square is getting larger. The sides are each growing at a constant rate of 3 in min . At what rate is the area of the square growing the moment its area is 25 in2

Respuesta :

Answer: [tex]30\ in.^2/min[/tex]

Step-by-step explanation:

Given

The side of a square is increasing at the rate of  [tex]\frac{dl}{dt}=3\ in./min[/tex]

The area of the square is the square of the side length

[tex]A=l^2[/tex]

when the area is [tex]25\ in.^2[/tex], its side must be [tex]5\ in.[/tex]

Differentiate area w.r.t time

[tex]\Rightarrow \dfrac{dA}{dt}=2l\dfrac{dl}{dt}\\\\\text{Insert the value}\\\Rightarrow \dfrac{dA}{dt}=2\times 5\times 3\\\\\Rightarrow \dfrac{dA}{dt}=30\ in.^2/min[/tex]