Respuesta :

Answer:

(47,16)

Step-by-step explanation:

System of Equations Problem.

Solve v(7)+b(6)=394;v(3)+b(12)=612

Solve 6b+7v=394 for b

Add -7v to both sides.

6b+7v+−7v=394+−7v

6b=−7v+394

Divide both sides by 6.

[tex]b=\frac{-7}{6} v+\frac{197}{3}[/tex]

Substitute [tex]b=\frac{-7}{6} v+\frac{197}{3}[/tex] for b in 12b+3v=612

12b+3v=612

[tex]12(\frac{-7}{6} v+\frac{197}{3} )+3v=612[/tex]

Simplify both sides of the equation.

−11v+788=612

Add -788 to both sides.

−11v+788+−788=612+−788

−11v=−176

[tex]\frac{-11v}{-11} =\frac{-176}{-11}[/tex]

v=16

Substitute 16 for v in [tex]b=\frac{-7}{6} v+\frac{197}{3}[/tex]

[tex]b=\frac{-7}{6} v+\frac{197}{3}[/tex]

[tex]b=\frac{-7}{6}(16)+\frac{197}{3}[/tex]

Simplify both sides of the equation.

b=47

Answer:

b=47 and v=16