Respuesta :

Answer:

[tex]MP = 12[/tex]

Step-by-step explanation:

Given

[tex]LM = (3x + 1), MN = (4x -3), NP = (6x - 5)[/tex]

[tex]LM = NP[/tex]

Required

Find MP

We have:

[tex]LM = NP[/tex]

This gives:

[tex]3x + 1 = 6x - 5[/tex]

Collect like terms

[tex]3x - 6x = -1-5[/tex]

[tex]-3x = -6[/tex]

Solve for x

[tex]x = 2[/tex]

MP is calculated as:

[tex]MP = MN + NP[/tex]

[tex]MP = 4x - 3 + 6x - 5[/tex]

Collect like terms

[tex]MP = 4x + 6x - 3 - 5[/tex]

[tex]MP = 10x - 8[/tex]

Substitute [tex]x=2[/tex]

[tex]MP = 10*2 - 8[/tex]

[tex]MP = 20 - 8[/tex]

[tex]MP = 12[/tex]