Answer:
[tex]MP = 12[/tex]
Step-by-step explanation:
Given
[tex]LM = (3x + 1), MN = (4x -3), NP = (6x - 5)[/tex]
[tex]LM = NP[/tex]
Required
Find MP
We have:
[tex]LM = NP[/tex]
This gives:
[tex]3x + 1 = 6x - 5[/tex]
Collect like terms
[tex]3x - 6x = -1-5[/tex]
[tex]-3x = -6[/tex]
Solve for x
[tex]x = 2[/tex]
MP is calculated as:
[tex]MP = MN + NP[/tex]
[tex]MP = 4x - 3 + 6x - 5[/tex]
Collect like terms
[tex]MP = 4x + 6x - 3 - 5[/tex]
[tex]MP = 10x - 8[/tex]
Substitute [tex]x=2[/tex]
[tex]MP = 10*2 - 8[/tex]
[tex]MP = 20 - 8[/tex]
[tex]MP = 12[/tex]