Respuesta :
Answer:
Option A (69.56 newtons) is the appropriate solution.
Explanation:
According to the question,
On the X-axis,
⇒ [tex]T_1Cos30^{\circ}-T_2Cos60^{\circ}=0[/tex]
or,
[tex]T_1Cos 30^{\circ}=T_2Cos60^{\circ}[/tex]
On substituting the values, we get
[tex]T_1\times \frac{\sqrt{3} }{2}=T_2\times \frac{1}{2}[/tex]
[tex]T_1\times \sqrt{3} =T_2[/tex]....(equation 1)
On the Y-axis,
⇒ [tex]T_1Sin30^{\circ}+T_2Sin60^{\circ}=139.3 \ N[/tex]
[tex]\frac{T_1}{2} +\frac{\sqrt{3} }{2} =139.2 \ N[/tex]
[tex]T_1+\sqrt{3}T_2=139.2\times 2[/tex]
From equation 1, we get
[tex]T_1+\sqrt{3}\times \sqrt{3}T_1 =278.4 \ N[/tex]
[tex]T_1+3T_1=278.4 \ N[/tex]
[tex]4T_1=278.4 \ N[/tex]
[tex]T_1=\frac{278.4}{4}[/tex]
[tex]=69.6 \ N[/tex]