Respuesta :

Answer:

[tex]\log 8 - \log x + 7\log\sqrt x =\log (8x^{\frac{5}{2}})[/tex]

Step-by-step explanation:

Given

[tex]\log 8 - \log x + 7\log\sqrt x[/tex]

Required

Express as a single expression

We have:

[tex]\log 8 - \log x + 7\log\sqrt x[/tex]

Write 7 as an exponent

[tex]\log 8 - \log x + 7\log\sqrt x =\log 8 - \log x + \log(\sqrt x)^7[/tex]

Rewrite as:

[tex]\log 8 - \log x + 7\log\sqrt x =\log 8 - \log x + \log(x^{\frac{1}{2}})^7[/tex]

[tex]\log 8 - \log x + 7\log\sqrt x =\log 8 - \log x + \log x^\frac{7}{2}[/tex]

Apply quotient and product rule of logarithm

[tex]\log 8 - \log x + 7\log\sqrt x =\log (\frac{8*x^\frac{7}{2}}{x} )[/tex]

Apply law of indices

[tex]\log 8 - \log x + 7\log\sqrt x =\log (8*x^{\frac{7}{2} - 1})[/tex]

Solve exponent

[tex]\log 8 - \log x + 7\log\sqrt x =\log (8*x^{\frac{7-2}{2}})[/tex]

[tex]\log 8 - \log x + 7\log\sqrt x =\log (8*x^{\frac{5}{2}})[/tex]

[tex]\log 8 - \log x + 7\log\sqrt x =\log (8x^{\frac{5}{2}})[/tex]