Respuesta :

Given:

The graph of a function.

To find:

The average rate of change of h over the interval [tex]5\leq t\leq 9[/tex].

Solution:

The average rate of change of a function f(x) over the interval [a,b] is:

[tex]m=\dfrac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]

So, the average rate of change of h over the interval [tex]5\leq t\leq 9[/tex] is:

[tex]m=\dfrac{h(9)-h(5)}{9-5}[/tex]

From the given graph it is clear that [tex]h(9)=7,h(5)=3[/tex]. Substituting these values, we get

[tex]m=\dfrac{7-3}{9-5}[/tex]

[tex]m=\dfrac{4}{4}[/tex]

[tex]m=1[/tex]

Therefore, the average rate of change of h over the interval [tex]5\leq t\leq 9[/tex] is 1.