Triangle ABC has vertices A(- 3, - 4), B(16, - 2) and C(13, - 10) . Show algebraically that ABC is a right angled triangle.​

Respuesta :

Given:

The vertices of a triangle ABC are A(-3,-4), B(16,-2) and C(13,-10).

To show:

That the triangle ABC is a right angled triangle.​

Solution:

Distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The vertices of a triangle ABC are A(-3,-4), B(16,-2) and C(13,-10).

Using the distance formula, we get

[tex]AB=\sqrt{(16-(-3))^2+(-2-(-4))^2}[/tex]

[tex]AB=\sqrt{(19)^2+(2)^2}[/tex]

[tex]AB=\sqrt{361+4}[/tex]

[tex]AB=\sqrt{365}[/tex]

Similarly,

[tex]BC=\sqrt{\left(13-16\right)^2+\left(-10-\left(-2\right)\right)^2}[/tex]

[tex]BC=\sqrt{73}[/tex]

And,

[tex]AC=\sqrt{\left(13-\left(-3\right)\right)^2+\left(-10-\left(-4\right)\right)^2}[/tex]

[tex]AC=\sqrt{292}[/tex]

Now, add the square of two smaller sides.

[tex]BC^2+AC^2=(\sqrt{73})^2+(\sqrt{292})^2[/tex]

[tex]BC^2+AC^2=73+292[/tex]

[tex]BC^2+AC^2=365[/tex]

[tex]BC^2+AC^2=(AB)^2[/tex]

Since the sum of the square of two smaller sides is equal to the square of the largest side, therefore the given triangle is a right angle triangle by using Pythagoras theorem.

Hence proved.