Respuesta :

Given:

The figure of a rhombus QRST.

To find:

A. The value of x.

B. The measure of angle RQP.

Solution:

A. We need to find the value of x.

We know that the diagonals of a rhombus are perpendicular bisectors. It means the angles on the intersection of diagonals are right angles.

[tex]m\angle RPS=90^\circ[/tex]                       [Right angle]

[tex](5x+15)^\circ=90^\circ[/tex]

[tex](5x+15)=90[/tex]

[tex]5x=90-15[/tex]

[tex]5x=75[/tex]

Divide both sides by 5.

[tex]x=\dfrac{75}{5}[/tex]

[tex]x=15[/tex]

Therefore, the value of x is 15.

B. We need to find the measure of angle RQP.

From the given figure, it is clear that

[tex]m\angle RQP=(2x+3)^\circ[/tex]

Putting [tex]x=15[/tex], we get

[tex]m\angle RQP=(2(15)+3)^\circ[/tex]

[tex]m\angle RQP=(30+3)^\circ[/tex]

[tex]m\angle RQP=33^\circ[/tex]

Therefore, the measure of angle RQP is 33 degrees.