Answer:
CI 90 % Â = Â [ Â 0,165 Â ; Â 0,235 ]
Lower limit   0,165
upper limit    0,235
Step-by-step explanation:
Sample information:
sample size   n  =  225
number of dissatisfied  individuals  x  =  45
p = 45/225
p = 0,2   and  q =  1 -  p  q  =  1  -  0,2  q  =  0,8
p*n = 0,2*225  =  45   and  q*n  =  0,8*225  =  180
p*n  and q*n  big enough to use the approximation of binomial distribution to normal distribution
90 % of Confidence Interval  then a significance level is  α  = 10%
α  =  0,1 in z table we get z(c) for that significance level
z(c) = 1,28
CI 90 %  =  [  p  ±  z(c)*√(p*q)/n ]
z(c) * √(p*q)/n   =  1,28 *  √ ( 0,2*0,8)/225
z(c) * √(p*q)/n   =  1,28 * 0,027
z(c) * √(p*q)/n   =  0,035
CI 90 %  =  [  0,2  ±  0,035 ]
CI 90 % Â = Â [ Â 0,165 Â ; Â 0,235 ]
Lower limit   0,165
upper limit    0,235