Answer:
The parametric equations represents an ellipse by the rectangular equation [tex]\frac{(x-2)^{2}}{9} + \frac{(y-1)^{2}}{16} = 1[/tex].
Step-by-step explanation:
We proceed to use the following trigonometric identity to derive an expression in rectangular form:
[tex]\cos^{2} t + \sin^{2} t = 1[/tex] (1)
Where:
[tex]\cos t = \frac{2-x}{3}[/tex] and [tex]\sin t = \frac{y-1}{4}[/tex]
Then, we expand the expression as follows:
[tex]\frac{(x-2)^{2}}{9} + \frac{(y-1)^{2}}{16} = 1[/tex] (2)
The parametric equations represents an ellipse by the rectangular equation [tex]\frac{(x-2)^{2}}{9} + \frac{(y-1)^{2}}{16} = 1[/tex].