Respuesta :

Given:

In quadrilateral ABCD, angle B=90° , AB=9m, BC=40m, CD=15m, DA=28m.

To find:

The area of the quadrilateral ABCD.

Solution:

In quadrilateral ABCD, draw a diagonal AC.

Using Pythagoras theorem in triangle ABC, we get

[tex]AC^2=AB^2+BC^2[/tex]

[tex]AC^2=9^2+40^2[/tex]

[tex]AC^2=81+1600[/tex]

[tex]AC^2=1681[/tex]

Taking square root on both sides, we get

[tex]AC=\sqrt{1681}[/tex]

[tex]AC=41[/tex]

Area of the triangle ABC is:

[tex]A_1=\dfrac{1}{2}\times base\times height[/tex]

[tex]A_1=\dfrac{1}{2}\times BC\times AB[/tex]

[tex]A_1=\dfrac{1}{2}\times 40\times 9[/tex]

[tex]A_1=180[/tex]

So, the area of the triangle ABC is 180 square m.

According to the Heron's formula, the area of a triangle is

[tex]Area=\sqrt{s(s-a)(s-b)(s-c)}[/tex]

where,

[tex]s=\dfrac{a+b+c}{2}[/tex]

In triangle ACD,

[tex]s=\dfrac{28+15+41}{2}[/tex]

[tex]s=\dfrac{84}{2}[/tex]

[tex]s=42[/tex]

Using Heron's formula, the area of the triangle ACD, we get

[tex]A_2=\sqrt{42(42-28)(42-15)(42-41)}[/tex]

[tex]A_2=\sqrt{42(14)(27)(1)}[/tex]

[tex]A_2=\sqrt{15876}[/tex]

[tex]A_2=126[/tex]

Now, the area of the quadrilateral is the sum of area of the triangle ABC and triangle ACD.

[tex]A=A_1+A_2[/tex]

[tex]A=180+126[/tex]

[tex]A=306[/tex]

Therefore, the area of the quadrilateral ABCD is 306 square meter.

Ver imagen erinna