Answer:
Explanation:
From the given information:
total mass = 25 kg
distance d = 100 m
height = 4.0 m
Force F = 9.0 N
The speed at (bottom) u = 5.0 m/s
Using the concept of energy conservation;
[tex]\dfrac{1}{2}mu^2 + W = \dfrac{1}{2}mv^2 + mgh[/tex]
divide both sides by m
[tex]\dfrac{1}{2}u^2 + \dfrac{W }{m}= \dfrac{1}{2}v^2 + gh[/tex]
multiply both sides by 2
[tex]\dfrac{1}{2}u^2\times 2 + \dfrac{W }{m}\times 2= \dfrac{1}{2}v^2\times 2 + gh\times 2[/tex]
[tex]u^2 +2 \dfrac{W }{m}=v^2 + 2gh[/tex]
[tex]v^2 =u^2 - 2gh+ 2 \dfrac{W }{m}[/tex]
Recall that:
W = Fd
∴
[tex]v^2 =u^2 - 2gh+ 2 \dfrac{Fd }{m}[/tex]
[tex]v^2 =(5.0 \ m/s)^2 - 2(9.81 \ m/s)(4.0 \ m)+ 2 \dfrac{( 9.0 \ N \times 100 \ m) }{25 \ kg}[/tex]
[tex]v^2 =(25.0 ) - 78.48 +72[/tex]
[tex]v^2 = 18.52 \ m^2/s^2[/tex]
[tex]v = \sqrt{18.52 \ m^2/s^2}[/tex]
v = 4.30 m/s