What is the volume of the solid whose cross- sections are circular disks perpendicular to the x-axis and with diameters on the region bounded by the curves y = x and y=x^2?

Respuesta :

Answer:

the volume of the solid is [tex]\frac{\pi }{120}[/tex]

Step-by-step explanation:

Given the data in the question;

y = x and y = x²

so

x = x²

x - x² = 0

Radius will be; r = ( x - x² )/2

Area of the circular disk πr² = π[ ( x - x² )/2 ]²

A = [tex]\frac{\pi }{4}[/tex]( x - x² )²

So, our volume will be;

V = ₀∫¹ A(x) dx

we substitute

= ₀∫¹ [tex]\frac{\pi }{4}[/tex]( x - x² )² dx        

{ lets expand; ( x - x² )² = x(x-x²) -x²(x-x²) = x² - x³ - x³ + x⁴ = x² + x⁴ - 2x³  }

so we have;

=  ₀∫¹ [tex]\frac{\pi }{4}[/tex]( x² + x⁴ - 2x³ ) dx  

= [tex]\frac{\pi }{4}[/tex] [tex][[/tex] [tex]\frac{x^3}{3}[/tex] + [tex]\frac{x^5}{5}[/tex] - [tex]\frac{2}{4} x^4[/tex] [tex]]^1_0[/tex]

= [tex]\frac{\pi }{4}[/tex][ [tex]\frac{1}{3}[/tex] + [tex]\frac{1}{5}[/tex] - [tex]\frac{2}{4}[/tex] ]

= [tex]\frac{\pi }{4}[/tex][ [tex]\frac{1}{30}[/tex] ]

V = [tex]\frac{\pi }{120}[/tex]

Therefore, the volume of the solid is [tex]\frac{\pi }{120}[/tex]