Respuesta :

Answer:

a) [tex]P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}[/tex]

b) f(2) = 0.04462

c) f(1) = 0.01487

d) [tex]P(X \geq 2) = 0.93803[/tex]

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of successes

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

In this question:

[tex]\mu = 6[/tex]

a. Write the appropriate Poisson probability function.

Considering [tex]\mu = 6[/tex]

[tex]P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}[/tex]

b. Compute f (2).

This is P(X = 2). So

[tex]P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}[/tex]

[tex]P(X = 2) = \frac{e^{-6}*6^{2}}{(2)!} = 0.04462[/tex]

So f(2) = 0.04462

c. Compute f (1).

This is P(X = 1). So

[tex]P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}[/tex]

[tex]P(X = 1) = \frac{e^{-6}*6^{1}}{(1)!} = 0.01487[/tex]

So f(1) = 0.01487.

d. Compute P(x≥2)

This is:

[tex]P(X \geq 2) = 1 - P(X < 2)[/tex]

In which:

[tex]P(X < 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]

[tex]P(X = x) = \frac{e^{-6}*6^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-6}*6^{0}}{(0)!} = 0.00248[/tex]

[tex]P(X = 1) = \frac{e^{-6}*6^{1}}{(1)!} = 0.01487[/tex]

[tex]P(X = 2) = \frac{e^{-6}*6^{2}}{(2)!} = 0.04462[/tex]

Then

[tex]P(X < 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00248 + 0.01487 + 0.04462 = 0.06197[/tex]

[tex]P(X \geq 2) = 1 - P(X < 2) = 1 - 0.06197 = 0.93803[/tex]

So

[tex]P(X \geq 2) = 0.93803[/tex]