Respuesta :
Answer:
Explanation:
The table can be computed as follows:
Size of loss    Probability of loss
50000 Â Â Â Â Â Â Â Â 0.005
30000 Â Â Â Â Â Â Â Â Â 0.01
10000 Â Â Â Â Â Â Â Â Â 0.02
5000 Â Â Â Â Â Â Â Â Â Â 0.05
0 Â Â Â Â Â Â Â Â Â Â Â Â Â 0.915
The expected claim for the cost can be calculated by multiply each of the loss sizes with their corresponding probability loss.
i.e.
[tex]= [50000 \times 0.005] + [30000 \times 0.01] + [10000 \times 0.02] + [5000 \times 0.05] + [0 \times0.915][/tex]
[tex]= 250 + 300 + 200 + 250 + 0[/tex]
[tex]= 1000[/tex]
Following the given assumptions:
The fair premium(X) of the policy is calculated as follows:
[tex]X= \dfrac{Expected \ Claim }{(1 + interest \ rate ) }+(Administrative \ Exp.\times X )+ exp. \ profit \ percentage[/tex]
[tex]X= \dfrac{1000}{(1 + 8\%)}+(10 \%\times X) +( 5\% \times 1000)[/tex]
[tex]X= \dfrac{1000}{(1 + 0.08)}+(0.1 X) + 50[/tex]
[tex]X-0.1X= \dfrac{1000}{(1.08)}+ 50[/tex]
0.9 X = 975.9259
X = 975.9259/0.9
Fair Premium (X) = 1084.36