Respuesta :

Step-by-step explanation:

[tex]B=100e^{0.592t}[/tex]

c) To solve for t, take the natural logarithm of the above equation:

[tex]\dfrac{B}{100}=e^{0.592t}[/tex]

[tex]\Rightarrow \ln \left(\dfrac{B}{100} \right) = \ln e^{(0.592t)}=(0.592t)\ln e[/tex]

Recall that [tex]\ln e = 1[/tex] so we can rewrite the equation above as

[tex]0.592t = \ln \left(\dfrac{B}{100} \right)[/tex]

Finally, solving for t, we get

[tex]t = \frac{1}{0.592} \ln \left(\dfrac{B}{100} \right)[/tex]