Solution :
It is given that :
[tex]$f'(t) = (350 \ln t)'$[/tex]
    [tex]$=350(\ln t)'$[/tex]
    [tex]$=\frac{350}{t}$[/tex]
So, [tex]f(5)=350 \ln (5) \approx 563[/tex]
   [tex]$f'(5) = \frac{350}{5}$[/tex]
       [tex]=70[/tex]
The relative change is then,
[tex]$\frac{f'(5)}{f(5)}=\frac{70}{350\ \ln(5)}$[/tex]
     [tex]$=\frac{1}{5\ \ln(5)}$[/tex]
     [tex]$\approx 0.12$[/tex]
     [tex]=12\%[/tex]
This means that after 5 weeks, the revenue from the DVD sales in $563 with a rate of change of $70 per week and the increasing at a continuous rate of 12% per week.