Solution :
Given expression :
[tex]$\mu_k$[/tex]mgcosθ = mgsinθ − ma
Here, g = 9.8 [tex]m/s^2[/tex] , a = 3.60 [tex]m/s^2[/tex] , θ = 27°
Therefore,
[tex]$\mu_k mg \cos \theta = mg \sin \theta - ma$[/tex]
[tex]$\mu_k mg \cos \theta = m(g \sin \theta - a)$[/tex]
[tex]$\mu_k g \cos \theta = (g \sin \theta - a)$[/tex]
[tex]$\mu_k =\frac{(g \sin \theta-a)}{g \cos \theta}$[/tex]
Mow calculating the coefficient of kinetic friction as follows :
[tex]$\mu_k=\frac{g \sin \theta-a}{g \cos \theta}$[/tex]
[tex]$\mu_k=\frac{9.8 \times \sin 27^\circ-3.60}{9.8 \times \cos 27^\circ}$[/tex]
[tex]$\mu_k=0.097$[/tex]