Find each missing length to the nearest tenth.

[tex]\huge\bold{Given:}[/tex]
Length of the perpendicular = 7
Length of the base = 10
[tex]\huge\bold{To\:find:}[/tex]
The length of the missing side (hypotenuse).
[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]
[tex]\longrightarrow{\purple{x\:=\: 12.21}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
Let the length of the missing side be [tex]x[/tex].
Using Pythagoras theorem, we have
(Hypotenuse)² = (Perpendicular)² + (Base)²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = (7)² + (10)²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = 49 + 100
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = 149
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = [tex]\sqrt{149}[/tex]
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = 12.206
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = 12.21.
Therefore, the length of the missing side [tex]x[/tex] is [tex]12.21[/tex].
[tex]\huge\bold{To\:verify :}[/tex]
[tex]\longrightarrow{\green{}}[/tex] (12.21)² = (7)² + (10)²
[tex]\longrightarrow{\green{}}[/tex] 149 = 49 + 100
[tex]\longrightarrow{\green{}}[/tex] 149 = 149
[tex]\longrightarrow{\green{}}[/tex] L.H.S. = R. H. S.
Hence verified.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}[/tex]