Answer:
C(min) = 0.5*V  +  √V/1.256  $
Step-by-step explanation:
The volume of a circular cylinder is: V(c)  = π*r²*h   where r is the radius of the circumference of the base and h is the height
The cost of the can is = the cost of (base and top) + lateral cost
Base surface = top surface =  π*r²
Then cost of ( base + top ) is = (2* π*r² )*0,1
Lateral surface is  = 2*π*r*h
Then cost of lateral surface is: Â (2*Ï€*r*h)*0,5
Total cost C(t) = (2* π*r² )*0,1  +  (2*π*r*h)*0,5
V = π*r²*h
Total cost  as a function of (V >0 a parameter) and r then
h  =  V / π*r²
C(V,r)  =  (2* π*r² )*0,1  +  π*r*(V / π*r²)
C(V,r)  =  0.2*π*r²  + V*/r
Taking derivatives on both sides of the equation we get:
C´(V,r)  =  2*0.2*π*r  -  V/r²
C´(V,r)  =  0       0.4*π*r  - V/r  = 0
Solving for r
0.4*π*r² - V = 0    ⇒  1.256*r²  = V      r = √ V/ 1.256   cm
and  h  =  V /π *  (√ V/ 1.256)²
h = Â 1/ 1.256*Ï€
h  =  0.254 cm
C(V,r)  =  0.2*π*r²  + V*/r
C(min) = 0.2*π* (√ V/ 1.256)²  +  V/ √ V/ 1.256
C(min) =  0.2*π*V/1.256  +  V/ √ V/ 1.256
C(min) = 0.5*V  +  √V/1.256  $