Respuesta :

Answer:

The lenght of one leg is 22 units

Explanation:

Given

[tex]h = 22\sqrt 2[/tex] --- hypotenuse

Required

The length of one side (l)

In a 45-45-90 triangle, the two sides are equal; i.e.

[tex]x^2 + y^2 = h^2[/tex]

Where:

[tex]x = y[/tex] --- the legs of the triangle

So, we have:

[tex]x^2 + x^2 = (22\sqrt{2})^2[/tex]

[tex]2x^2 = (22\sqrt{2})^2[/tex]

This gives:

[tex]2x^2 = 968[/tex]

Divide both sides by 2

[tex]x^2 = 484[/tex]

Take square roots of both sides

[tex]x = \sqrt{484}[/tex]

[tex]x=22[/tex]