Answer:
d. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Explanation:
The current through a capacitor is given by i = CdV/dt where C = capacitance of capacitor and V = voltage across capacitor. At steady state dV/dt = 0 and V = constant. So, i = CdV/dt = C × 0 = 0.
So, in dc steady state, the voltage across a capacitor is constant and the current zero.
The voltage across an inductor is given by V = Ldi/dt where L = inductance of inductor and i = current through inductor. At steady state di/dt = 0 and V = constant. So, V = Ldi/dt = L × 0 = 0.
So, in dc steady state, the voltage across an inductor is zero and the current constant.
So, In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
The answer is d.