Answer:
The appropriate answer is "144".
Step-by-step explanation:
Given:
Population standard deviation,
[tex]\sigma=10.4[/tex]
Margin of error,
[tex]E=1.7[/tex]
[tex]CL=95[/tex] %
[tex]CL=1-\alpha[/tex]
Or,
[tex]\alpha=1-CL[/tex]
 [tex]=1-0.95[/tex]
 [tex]=0.05[/tex] Â
Now,
Critical value,
= [tex]Z_{\frac{\alpha}{2} }[/tex]
= [tex]Z_{\frac{0.05}{2} }[/tex]
= [tex]1.96[/tex]
The minimum sample size will be:
⇒ [tex]n=\frac{Z^2_{\frac{\alpha}{2} }(\sigma)^2}{E^2}[/tex]
By putting the values, we get
    [tex]=\frac{(1.96)^2(10.4)^2}{(1.7)^2}[/tex]
    [tex]=\frac{415.5074}{2.89}[/tex]
    [tex]=143.774[/tex]
or,
    [tex]=144[/tex] Â