What is the domain of function p?
p(x) = /x-1+2

Answer:
A.
Step-by-step explanation:
a strange question, as 2 answer options are actually possible, as they define valid domains for this function.
and if the range of the function would include imaginary numbers ("i"), all 4 would be correct.
the problem statement has to be much more precise. you can tell your teacher that.
but I assume, we base just on real numbers and want the biggest domain range. and that is A.
A. for x=1 we get sqrt(0) + 2, which is absolutely valid.
B. a square root of a negative number is undefined in the works of real numbers. we would need "i", the imaginary numbers, to make this a valid function.
C. is also valid. no bad values and expressions involved. it is just a snake range than A.
D. the same a for B.
The domain of the function [tex]f(x) = \sqrt{x - 1} + 2[/tex] is [tex][1,\infty)[/tex]
The function is given as:
[tex]f(x) = \sqrt{x - 1} + 2[/tex]
Set the radicand greater than or equal to 0
[tex]\sqrt{x - 1} \ge 0[/tex]
Take the square of both sides
[tex]x - 1 \ge 0[/tex]
Add 1 to both sides
[tex]x \ge 1[/tex]
This means the possible values of x starts from 1 till infinity
Hence, the domain of [tex]f(x) = \sqrt{x - 1} + 2[/tex] is [tex][1,\infty)[/tex]
Read more about domain at:
https://brainly.com/question/1770447