Respuesta :
Answer:
Using a formula, the standard error is: 0.052
Using bootstrap, the standard error is: 0.050
Comparison:
The calculated standard error using the formula is greater than the standard error using bootstrap
Step-by-step explanation:
Given
Sample A Sample B
[tex]x_A = 30[/tex] [tex]x_B = 50[/tex]
[tex]n_A = 100[/tex] [tex]n_B =250[/tex]
Solving (a): Standard error using formula
First, calculate the proportion of A
[tex]p_A = \frac{x_A}{n_A}[/tex]
[tex]p_A = \frac{30}{100}[/tex]
[tex]p_A = 0.30[/tex]
The proportion of B
[tex]p_B = \frac{x_B}{n_B}[/tex]
[tex]p_B = \frac{50}{250}[/tex]
[tex]p_B = 0.20[/tex]
The standard error is:
[tex]SE_{p_A-p_B} = \sqrt{\frac{p_A * (1 - p_A)}{n_A} + \frac{p_A * (1 - p_B)}{n_B}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{\frac{0.30 * (1 - 0.30)}{100} + \frac{0.20* (1 - 0.20)}{250}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{\frac{0.30 * 0.70}{100} + \frac{0.20* 0.80}{250}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{\frac{0.21}{100} + \frac{0.16}{250}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{0.0021+ 0.00064}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{0.00274}[/tex]
[tex]SE_{p_A-p_B} = 0.052[/tex]
Solving (a): Standard error using bootstrapping.
Following the below steps.
- Open Statkey
- Under Randomization Hypothesis Tests, select Test for Difference in Proportions
- Click on Edit data, enter the appropriate data
- Click on ok to generate samples
- Click on Generate 1000 samples ---- see attachment for the generated data
From the randomization sample, we have:
Sample A Sample B
[tex]x_A = 23[/tex] [tex]x_B = 57[/tex]
[tex]n_A = 100[/tex] [tex]n_B =250[/tex]
[tex]p_A = 0.230[/tex] [tex]p_A = 0.228[/tex]
So, we have:
[tex]SE_{p_A-p_B} = \sqrt{\frac{p_A * (1 - p_A)}{n_A} + \frac{p_A * (1 - p_B)}{n_B}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{\frac{0.23 * (1 - 0.23)}{100} + \frac{0.228* (1 - 0.228)}{250}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{\frac{0.1771}{100} + \frac{0.176016}{250}}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{0.001771 + 0.000704064}[/tex]
[tex]SE_{p_A-p_B} = \sqrt{0.002475064}[/tex]
[tex]SE_{p_A-p_B} = 0.050[/tex]
