Find the distance between the points (-6, -8) and (6, -3).
Write your answer as a whole number or a fully simplified radical expression. Do not round.
units

Respuesta :

Space

Answer:

[tex]\displaystyle d = 13[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2+(y_2 - y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

Point (-6, -8)

Point (6, -3)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                         [tex]\displaystyle d = \sqrt{(6- -6)^2+(-3- -8)^2}[/tex]
  2. [√Radical] (Parenthesis) Subtract:                                                                   [tex]\displaystyle d = \sqrt{12^2+5^2}[/tex]
  3. [√Radical] Evaluate exponents:                                                                       [tex]\displaystyle d = \sqrt{144+25}[/tex]
  4. [√Radical] Add:                                                                                                 [tex]\displaystyle d = \sqrt{169}[/tex]
  5. [√Radical] Evaluate:                                                                                         [tex]\displaystyle d = 13[/tex]